Using Aura information in NASA-Unified WRF applications on air quality, water and carbon cycles

Min Huang (mhuang10@gmu.edu) Major contributors:

J. Crawford², G. Diskin², J. Santanello²,

S. Kumar², M. Parrington³, R. Stauffer², A. Thompson², A. Weinheimer⁴, K. Miyazaki⁵, K. Bowman⁵, J. Park⁶

¹GMU; ²NASA; ³ECMWF; ⁴NCAR; ⁵JPL/Caltech; ⁶KMA

Aura STM | Pasadena, CA | 28 Aug 2019

Hydrological modeling and data assimilation (DA) coupled with atmospheric modeling in NUWRF

SMAP soil moisture DA (into Noah LSM) impacts on NUWRF CO (ppbv) during a pollution transport event (31 May 2016)

- CO (& H₂O) improved in places, stronger for airmasses originating from outside of S Korea
- Chemical BC/IC: high-res ECMWF CAMS w/ multi-species chemical DA advantageous
- Still need to jointly improve various emission inputs and land modeling/DA methods

atmos BC

(FNL, 0.25°)

Emission impacts on atmosphere-biosphere interactions

Noah-MP LSM:

- Separate vegetation canopy
- Dynamic vegetation w/ Ball-Berry stomatal resistance
- Multi-layer snowpack + other improvements from Noah

NUWRF experiments:

Base: largely based on HTAP2
Sensitivity: NOx emissions
replaced with DECSO in urban
& non-terrestrial areas (based
on CCI land cover): total
anthropogenic emissions ~10%
lower than base case, w/ urban
& shipping >60 % of the total

Both cases:

- Aerosol direct & indirect effects on
- NUWRF chemical fields compared with AERONET, GOCI, aircraft, ship obs
- GPP/ET compared with SMAP L4 carbon/COMS ET

NUWRF sensitivities: 9-16 KST, 31 May 2016 (cloudy)

Emission-induced aerosol changes interact with radiation/temperature, affecting GPP & ET. GPP/ET (water use efficiency) indicates plants' resilience to environmental changes.

Ongoing: multi-LSM land DA, for SE US in 2013 & 2016

- Drought conditions indicated by modeled & SCAN "surface" SM consistent with PDSI
- Inter-LSM differences in SM shown. Now assimilating satellite land products (SM, etc.) into both LSMs within LIS, coupled with NUWRF

Comparing events in regions with strong L-A interactions

19-21 Aug 2016: convective weather

27-29 Aug 2016: fair weather

NUWRF atmospheric fields respond to land initialization differently during these events (more details at AGU)

Examining several BC/IC models w/ chemical DA

MODIS surface & active fire conditions

19 Aug 2013: strong fire activities captured by satellites and a SEAC⁴RS flight United States

A serica

Gallage

Galla

O₃ @18z ~500 hPa

BC in current work on SE US

- WUS, central America influences of concern
- 3 global systems w/ multispecies chemical DA
- More chemical species analyzed & more attention to species mapping

BC in previous works on WUS (poster)

- Influenced by stratosphere, Asia ...
- 1 global chemical DA system vs. the free-running system(s)

Emissions: toward reconciling projected inventories & observation-constrained estimates

- Substantial differences in spatial variability and temporal changes of emissions. These differences and their impacts on NUWRF results are being studied.
- Also looking into other emissions; anthropogenic emissions of some species are being co-adjusted referring to aircraft observations from SE US field campaigns

Other current efforts and next steps

- Extended interannual and inter-event comparisons: 2019 to be covered
- Intensively addressing connections between land surface and fire situations
- Utilizing data from newer missions: e.g., TROPOMI, OCO3, ECOSTRESS (ISS orbit, diurnal variability), FIREX-AQ, GEDI ...
- Taking advantage of the very recent (summer 2019) updates in CAMS: higher vertical resolution (60 L → 137 L), improved aerosols

More information in poster
Thanks to Aura & other science teams
& your attention

